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This paper presents a complete analysis of the theory of an instrument to measure 
the diffusion coefficients in liquid mixtures based upon the phenomenon of Taylor 
dispersion. The analysis demonstrates that it is possible to design an instrument 
that operates very nearly in accordance with the simplest mathematical descrip- 
tion of the dispersion of a solute pulse in a fluid in laminar flow within a straight, 
circular cross-section tube. The small departures of a practical instrument from 
the ideal are evaluated as corrections by means of a general perturbation treatment 
that allows them to be examined one at a time. The corrections considered include 
the effects of the finite volume of the injection pulse, the finite volume of the 
concentration monitor, the coiling of the tube, and the nonuniformity and noncir- 
cularity of the cross section, as well as the variation of the fluid properties with 
composition. All the equations necessary for the design of an instrument of this 
type, and for the evaluation of experimental data free from significant systematic 
errors, are presented. 

KEY WORDS: diffusion coefficient; liquid mixtures; Taylor dispersion; liquid 
diffusion. 

1. I N T R O D U C T I O N  

The process of molecular diffusion in liquids is often the rate limiting factor in 
chemical engineering operations involving mass transfer such as absorption, 
liquid-liquid extraction, and heterogeneous chemical reactions (1). More- 
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over, the diffusion coefficient is that liquid phase transport property most 
easily calculated in molecular dynamics simulations, which are valuable tools 
in the development of theories of the liquid state [2]. It is therefore 
regrettable that there have been few accurate, systematic studies of molecular 
diffusion coefficients in the liquid phase. The principle reason for these lack 
of measurements is undoubtedly the inherent slowness of the diffusion process 
in liquids, which necessitates experiments of several days' duration to obtain a 
single datum. 

For particular systems, special techniques have now been developed that 
permit rapid measurement of diffusion coefficients with moderate accuracy. 
For example, the self-diffusion coefficients of macromolecules in dilute 
solutions may now be studied by photon-correlation spectroscopy [3]. For 
simpler liquid systems, two more generally applicable techniques have 
recently been developed, which promise both rapid diffusivity determinations 
and relatively high accuracy. The first method is one based upon holographic 
interferometry [4, 5]. In this technique, the concentration changes arising 
from diffusion in a static liquid mixture of initially nonuniform composition 
are followed using optical interference techniques and interpreted with the 
aid of Fick's Law of Diffusion. Because of the high resolution associated with 
the optical method of observation, this experimental technique is probably the 
most accurate available [4]. However, the method is restricted to the 
measurement of mutual, or interdiffusion, coefficients in liquid mixtures. 

The second method, which has sometimes been called the chromato- 
graphic broadening technique [4], is based upon the work of G. I. Taylor, 
published in 1953, in which he analyzed the dispersion of a pulse of soluble 
material in a solvent flowing in laminar flow through a circular section tube 
[6]. In essence, the experimental technique makes use of the velocity profile 
characteristic of laminar flow to enhance the dispersion of the pulse brought 
about by molecular diffusion alone. The coupling of the flow-induced disper- 
sion with molecular diffusion in this way has the result that a significant 
dispersion of an initially concentrated pulse can be achieved in a short time. 
Furthermore, the flow of the fluid allows a single concentration monitor fixed 
at one point in space to observe all of the dispersed solute, instead of the 
spatially distributed measurements of concentration necessary in other meth- 
ods. The technique therefore has the virtues of rapidity and simplicity, and it 
has been employed for several independent sets of measurements [7-12]. 

However, the theoretical description of the dispersion process given 
originally by Taylor, and later more exactly by Aris [ 13], was not intended to 
form the foundation of a technique for diffusivity measurements, but rather 
to predict solute dispersion in pipelines. Consequently, the use of this 
theoretical description of the dispersion process without modification for the 
particular application of diffusivity measurements has, in the past, been 
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justified on the basis of empirical observations. Such procedures inevitably 
degrade the accuracy of the experimental data obtained, and for this reason, 
the method has been termed one of moderate accuracy [4]. In this paper, we 
provide a more complete treatment of the theory of the Taylor dispersion 
method for diffusivity measurements in order to obtain a set of working 
equations for an instrument operating on this principle. In turn, these 
equations permit us to assess the accuracy of the results of measurements 
with this method, and to show that it can be made comparable with that of 
other techniques. In a companion paper, measurements of liquid phase 
diffusion coefficients are reported that support this contention. 

2. T H E  P R I N C I P L E  OF T H E  E X P E R I M E N T A L  M E T H O D  

We consider first the simplest mathematical  model of an instrument to 
measure liquid phase diffusivities using Taylor dispersion. This mathematical  
model refers to an idealized experiment, which cannot be realized in practice. 
Nevertheless, it will be shown that a practical instrument can be designed so 
that  its departures from the ideal are small and so that they may be evaluated 
with the aid of a proper analysis. 

Figure 1 shows the ideal experimental arrangement and defines the 
geometry of the apparatus. For generality, we consider a homogeneous liquid 
mixture of species 1 and 2 flowing in laminar flow through an infinitely long, 
isothermal, straight tube of uniform, circular cross section, radius a0, with 
impermeable walls. We denote the molar concentrations of the species in the 
flowing mixture by C~I and C2f , respectively. The mean velocity of the liquid 
mixture in the tube is denoted by T0. At time t = 0, a sample of liquid mixture 
of  the same two components of a different composition is introduced into the 
tube at z = 0. The molar concentrations of the two components in the sample 
are C~; and C2i, respectively, and its mass density is supposed the same as that 
of  the flowing stream. The sample fills the cross section of the tube at z = 0 
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The ideal Taylor dispersion experiment. 
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completely, it is of uniform composition over this cross section, and is 
supposed to extend infinitesimally in the axial direction. The only perturba- 
tion of the flowing stream therefore arises from the change in the concentra- 
tion of component 1 at z = 0, which may be represented by a delta-function, 
6(z), which is normalized so that 

rr a 2 f _ =  r - -  C,ildz = N, (1) 

where 6(z) = 0 for z 4: 0, and N l represents the number of moles of 
component 1 in the sample in excess of those present in the same volume of 
the flowing stream. 

The concentration gradient established by the introduction of this 
sample, together with the action of the parabolic velocity profile of laminar 
flow, results in dispersion of the pulse. The process of molecular diffusion 
involved is clearly that of mutual or interdiffusion and, in the present analysis, 
the appropriate diffusion coefficient, Y)~2, is supposed to be independent of the 
composition of the liquid mixture. 

If we denote the perturbation to the flowing stream composition caused 
by the pulse by 2xG(r, O, z, t), then the differential equation for A G ,  
describing the dispersion, is 

'~12 Ot ~12 1 - - 2  aoo Oz (2) 

and the conditions for its solution are, at t = 0, 

AC,(r, O, 0, 0) = ~(z)(C,, - Gf); 6(z) = 0 for z 4 :0  (3) 

and 

a(AC,) 
Or 

0 at r = a0 for all t (4) 

together with sufficient conditions on AC1 for z = _+~. 
In his original analysis, Taylor [6] introduced an approximation 

concerning the relative magnitudes of axial and radial dispersion so as to 
render the solution of Eq. (2) practicable. However, here we prefer to follow 
the work of Aris [ 13], and to seek solutions for various spatial moments of the 
concentration distribution, since these turn out to be sufficient for the analysis 
of the experiment. 

We define the pth spatial moment of the concentration distribution at a 
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radial position r about an origin moving with the mean velocity of the flow by 
the equation 

cp(r, O, t) = a p+' f ~ 8PAC,(8, r, O, t)d8 (5) 

Here 

= (z - uot)/ao (6) 

denotes a dimensionless axial coordinate with respect to the moving origin. 
The moments of the distribution, averaged over a cross section of the tube, are 
then defined by the equation 

= ~-a~ Jo s ao rcp(r, O, t)drdO (7) mp 

and the normalized moments by 

#'p = mp/mo (8) 

Following the work of Aris [13], two sets of differential equations for cp and 
mp can then be derived from Eq. (1), which read 

1 0% l O(rOCp~ l 02% 
~0,2 0t - rOr~ Orl + - ~ - y  + P(P- -  1)Cp_: 

(r)2) 
+ p 1 - 2  Yoo c._, 

1 dmp 
Y)12 dt p (p  - -  1) rap_ 2 

((r)2) 
P-rio dO fo "~ 2 cp 1 dr 

and 

(9) 

(lO) 

For the conditions of this analysis, sufficient conditions on the behavior of 
AC1 at ~ = _+~ are ensured by the fact that the sample introduced occupies a 
finite volume of the tube. 

The solutions of Eqs. (9) and (10) for the present boundary conditions 
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have been given by Aris [ 13]. For the zeroth moment, averaged over a cross 
section, we obtain 

mo = constant or t~'o = 1 (11) 

which merely express conservation of mass. Furthermore, 

ml = 0 = u]  ( 1 2 )  

which expresses the fact that the mean of the distribution, averaged over a 
cross section, travels in the tube with the average velocity of the flow. The 
mean of the distribution as a function of radial position in the tube may be 
obtained as 3 

8~oa~ Jo( o~ [- gn 12t/a ] (13) ao-~ exp 
+ Jo(-o.) 

In this expression, ao, represents the nth zero of dJo(x)/dx, where Jo is the 
zeroth-order Bessei function of the first kind. 

The cross-section averaged second moment,/~, may also be derived, and 
is given by the expression 

- - 2  2 

, u~a?3 ~ t u s = 2  Y)12+48~0~2] 

(-ff~a41 ~ c%.8[1 - exp (-o~2.Y)lzt/a2)] (14) 
- 1 2 8  I , - ~ 1 2 /  .= l  

Aris was also able to show that the longitudinal distribution of concentration 
approaches that of a normal distribution as t ~ ~. The approach to normality 
occurs as t -~, as can be seen, for example, from the expression for the 
skewness of the cross-section averaged distribution, 

S = u; 2 / ul 3 (15) 

which is given asymptotically by the relation [ 13] 

3The authors are grateful to W. Baldauf for drawing their attention to an error in the original 
expression given by Aris [13]. 
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Uoao (16) S = 49-6  8 

2203972 [1 + ~ ]  K~ ]3t 

Equations (12) and (14) yield the fundamental working equations for the 
analysis of the ideal experiment. We first note that the exponential transient 
term in Eq. (14) can be made to decay arbitrarily rapidly by the choice of 
suitable conditions. Thus for 

~012t/a~ > 0.6 (17) 

the transient terms contribute less than 0.01% to the second term of Eq. (14). 
Hence provided that Eq. (17) is satisfied, Eq. (14) may be written 

u~ a~ / u0 a0 1 1 
u2' = 2 5912 + 48 Y)12] Y)~2 (3.8317) 8 + (7.0156) 8 + " " " 

Because the mean velocity of the flow can be chosen independently of the time 
t, we note that if 

Uo > 700 Y)12/ao (19) 

then Eq. (18) can be reduced to the form 

- -2  2 Uoao 128 K-ff2a 4 
#~ 24 ~0t~ t Y)~z2 (20) 

with an associated error of less than 0.01%, which we regard as negligible. In 
this equation, we have written 

K = ~"+ C~o-, 8 = 2.1701 . . .  • 10 -5 (21) 
n=2 

for convenience. It can be shown that, for measurements in liquids, condition 
(19) is easily satisfied while maintaining the fluid flow in the laminar 
regime. 

Equation (20) could evidently form the fundamental working equation 
for the ideal experiment, since the diffusion coefficient 50t2 could be derived 
from experimental measurements of the second moment, stY_, with the aid of it. 
However, for later use it is more convenient to employ a limiting form of this 
equation. Since the duration, t, of the measurement may be chosen arbitrari- 
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ly, we note that the time independent term in Eq. (20) may be made 
negligible (<0.01%) by choosing 

g)12t/a 2 > 700 (22) 

This selection automatically ensures that the transient term in Eq. (14) is 
even smaller than that corresponding to condition (17). In this case, Eq. (20) 
reduces to the very simple form 

' ' ( 2 3 )  u2 = - - t  = u20 
24~)12 

where the subscript (0) implies the satisfaction of conditions (19) and (22) in 
the experiment. Furthermore, by virtue of Eq. (12), the mean velocity of the 
fluid u0 may be determined from the first moment of the distribution with 
respect to the fixed origin z = 0. Denoting the first moment by Y, it follows 
that 

-fro= 2/ t  (24) 

so that the final working equation for the ideal diffusion experiment becomes 

22 ao 2 
/)12 (25) r 24 tz20 t 

A diffusion coefficient determination may therefore be performed by 
measurement of just the first and second spatial moments of the cross-section 
averaged concentration distribution after flow for a time t in a tube of known 
radius. 

If condition (22) is not satisfied, the second moment required in Eq. (25) 
can still be derived from the measured moment, ts~, by application of the 
correction 6#~1 in the form 

#~o = ~ + 6t~1 (26) 

where 

128 KKZa 4 
~,~1 = 3922 (27) 

Provided that 

:D,2t/a2o > 10 (28) 
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the correction 6~z;~ amounts to no more than 0.6% of #;, and so may be 
calculated with sufficient accuracy using an estimate for s 

Finally, in this section we record for future use that if conditions (19) 
and (20) are satisfied, then the absolute skewness of the spatial distribution is 
less than 5 x 10 -8, so that for practical purposes the distribution may be 
regarded as normal. Furthermore, it follows that the Taylor dispersion 
process under the conditions specified may be equally well described by the 
one-dimensional differential equation for the concentration perturbation 
averaged over a cross section, AG,,. This equation reads [6, 13]: 

E O2(AClm) -- O(AClm) a(ACtm) (29) 
Oz 2 Uo Oz Ot 

where E is an effective diffusivity 

2--2 
a0 U0 

E = - -  ( 3 0 )  
48~012 

This one-dimensional representation is equivalent to the process of plug flow 
plus axial diffusion with a diffusivity E, and the moments of its solution are 
identical to those for the solution of the full diffusion equation for the 
conditions detailed above. 

3. PRACTICAL CONSIDERATIONS 

The ideal experimental method outlined in the previous section is not 
practicable for measurements of diffusion coefficients. Furthermore, even if it 
were, it would not be possible to construct an apparatus to exactly conform 
with the ideal. In order to perform such measurements using the same 
principle it is therefore necessary to make changes to the experimental 
method and to examine the ways in which a practical instrument differs from 
the ideal. In the following sections of this paper we examine the consequences 
of these considerations for the design of an instrument and the working 
equations for the analysis of experimental data. In this examination, we shall 
presume that all departures from the ideal model are small, so that they may 
all be treated as first-order perturbations. In this case, we may further 
suppose that the interaction between any two or more of these first-order 
effects is negligible and that therefore we may treat each perturbation 
independently. The conditions under which such assumptions are valid will, of 
course, emerge from the analysis and form the basis of design criteria. 

The departures of a practical instrument from the ideal may be classified 
under four headings: 
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1. Concentration distribution determination 
2. Sample introduction 
3. Diffusion tube geometry 
4. Concentration dependent fluid properties 

In the following sections, we examine each of these in turn, and, where it is 
appropriate, express the effect of the departure from the ideal instrument as a 
small correction to the ideal working equations. In some cases, it will be 
possible to render the corrections negligible by proper design. In other cases, 
the correction can only be made small by design, but then it can be estimated 
with sufficient accuracy to make the contribution to the overall uncertainty in 
the diffusion coefficient measurements negligible. 

4. CONCENTRATION DISTRIBUTION DETERMINATION 

4.1. Temporal Moments 

We first consider the fact that it is experimentally much more conve- 
nient to observe the concentration distribution at a particular cross section in 
the tube as a function of time, rather than to observe it at one instant of time 
as a function of axial position. We therefore consider again the diffusion 
process described earlier in the ideal apparatus, but now we suppose that we 
can determine the cross-section averaged perturbation of the concentration of 
component 1, denoted by ACIm, at an axial position z = L, in an infinitesi- 
mally small length of the diffusion tube. Then, in order to relate the temporal 
moments of the distribution observed in this way to the spatial moments of the 
previous section, we use the result derived there that the spatial distribution is 
essentially normal. 

Thus we write [6] for AClm, 

N, / - ( z -  Uot)2/ 
AC, m= xf~zr3/2a~#,2,/2expl - }-{  J (31) 

For an observation carried out in the cross section at the axial position z = L, 
we define 

~" = Uot / L 

and 

= #~ / 2uoLt 

We can then rewrite Eq. (31) in the form 
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A C ,  m - 27ra2L ( l r f r )  - ' / 2  exp ~ (32) 

The normalized, temporal moments of this distribution, for a measurement 
carried out in the idealized apparatus, [tzp]id, are then defined by the 
equation 

[~p]id=(L)Pfo~TPz~ClmdT/fo~AClmdT (33) 

In general, the quantity ~- is time dependent, as a result of the definition of #; 
in Eq. (20), and the analytic evaluation of Eq. (33) is impossible. Conse- 
quently, we seek approximate solutions for the temporal moments. Because 
the time dependent part of ~" is generally small [<0.6% if condition (28) is 
satisfied], these approximations will prove sufficiently accurate. 

4 . 1 . 1 .  Z e r o t h - O r d e r  A p p r o x i m a t i o n  

If both conditions (19) and (22) are satisfied, then, with negligible 
error, 

= ~o = # '2o /2uoLt  = uoaZ/48L2D~2 (34) 

which is time independent, and evaluation of the first temporal moment 
[/~l]id --- tid leads to result of Pratt and Wakeham [14], 

L 
t~d = = (1 + 2~o) (35) 

UO 

Under the same conditions, the second raw temporal moment, derived by 
Levenspiel and Smith [15] is 

 L)2{ ) [,1/'2] id = ~00 1 + 6~-0 + 12~'o 2 

so that the temporal variance of the distribution, denoted by a~zd, may be 
written 

2 

2 2~'o} (36a) ~id = {8/'0 ~ + 

8~ "2 + 2~'o 
= (1 + 2~'o) 2 (7id)2 (36b) 
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Here we have used the subscript (id) to denote that the various moments refer 
to measurements in the ideal diffusion apparatus of the previous section. 
Equation (36) can be solved exactly for ~'o to yield 

__ dg2 2 l l /2 

~'0 = {8~2 d _ 4ff~d } (37) 

Finally, from Eqs. (35) and (23), we note that 

(1 + 2~'o) a~ 
~)12 = (38) 

~'0 48 i id  

so that using Eq. (37) in (38), we obtain the final working equation for the 
experiment in the form 

/ . 2 t'~2 11/2 ).} 
~-q~--, . a  2 [1 + ~ I + 3 (39) 

1) 12 = A 2 /72 11/2 2 -2 z t,d[([1 q- "VOid/rid ] -{- 2Crid/tid - -  1 

With this equation the diffusion coefficient can be determined from measure- 
ments of the first two temporal moments of the concentration distribution at a 
particular cross section of the diffusion tube. 

4.1.2. First-Order Approximation 

If condition (19) is satisfied, but the measurement time, t, is such that 
condition (22) is not satisfied, it is still possible to obtain an analytic working 
equation provided that the somewhat weaker condition (28)on  the diffusion 
time is met. In this case, we write 

where 

64K~o a4 
6 ~ -  LY)22t 

We note now that the major contribution to the integrals in Eq. (33) arises 
from near r = 1, so that we may employ a quasisteady-state approximation to 
evaluate the small correction fi~'. That is, we evaluate 6~" at t ~ L/-ffo, so that 

64Ka4~ 
~ = L25022 
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and thus ~'1 can, within this approximation, be treated as time independent. 
We may now carry though the procedures of the zeroth-order analysis again, 
using ~'1 in place of ~'o, and we find for the final working equation 

. A 2 /~2 11/2 }} a~ [1 -j- "rOid/~id ] -~- 3 
~),2 = ~  [1 + 4aid/tid ] 2  -2 1/2 + 20.id/tid2 -2 _ 1 

(40) 

where 

6~ = (768)2K~'0 

and ~'o is defined by Eq. (37). Again, the working equation relates the 
diffusion coefficients to the first two temporal moments of the distribution 
observed in the ideal diffusion tube. Provided that condition (28) is satisfied, 
the term ~a contributes at most 0.6% to the measured diffusion coefficient, so 
that the foregoing analysis for its estimation is sufficiently accurate. 

In summary then, Eqs. (39) and (40) constitute the fundamental 
working equations for the evaluation of diffusion coefficients from temporal 
moment measurements in an ideal diffusion apparatus subject to the condi- 
tions 

~oao Y)12t/a~ > 10 and ~12 > 700 

We note also that if ;D12t/a~ > 10, then ~'o < 2 x 10 -3, so that Eqs. (36) and 
(38) may be linearized with respect to ~'o as was done earlier [14]. In this case, 
the approximate working equation, which we shall find useful later, becomes 

Y)~2 = a~tid/ 24azd (41) 

with an error of no more than 1%. 

4.2. The Concentration Monitor 

The preceding analysis supposed that it was possible to determine the 
average concentration in a cross section of the diffusion tube at a particular 
axial position. In practice, such a measurement is not possible; rather, some 
average concentration in a finite length of the tube must be determined. 
There are two ways in which this may be accomplished and we consider them 
both here. 
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detection 
Zone 

Z z=L 

Fig. 2. The concentration monitor as a finite 
length of the diffusion tube. 

4.2.1. A Section of  the Diffusion Tube 

In this concentration monitor, shown schematically in Fig. 2, we suppose 
that it is possible to determine the average perturbation to the concentration 
of the flowing stream in a small length 6L of the diffusion tube itself 
beginning at z = L. We denote this average concentration perturbation by 
AC1 and define it by the equation 

l fL+'Lfoa~ (42) AC1 (L, t) - ~ra26L .'L 

A composition monitor of this type could be employed when one of the 
components of the perturbing pulse is radioactive. In this case, the detector 
itself would consist of a test section of the diffusion tube within the field of 
view of a suitable activity monitor, which would define the length 6L 
observed. This might be employed in measurements of self-diffusion coeffi- 
cients of liquids. Clearly, owing to the finite volume of the detector the 
temporal moments of AC~ will not be identical to those of ACorn. 

Introducing again the cross-section averaged composition perturbation 
ACorn, we can write Eq. (42) in the form 

f L + 6 L  A G (L, t) = 6L .& ACl,dZ 

If  we suppose that all of our previous conditions are satisfied in the 
experiment, then we can use Eq. (3 l) for ACIm, so that ACI(L, t) becomes 

N, fL+~L [.(z - Uot) 2 ] 
AC1 = X/2 7c3/2a2t~L(#'20) 1/2 -'t exp 2-#~o I dz (43) 

where for the present purposes, we have set #2 = #20- Evaluating the integral 
in Eq. (43), we obtain 

AC1 = /~_~ [erf [ (_1_~ r) 8 L / L ]  [(1 - r)] / 
27rao6L [ [(4~'o~-) 1/2 + ( ~ 2 J  - erf [(4~.or),/2j ] (44) 

using the definitions of r and ~'o given earlier. 
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In accordance with the approach outlined in Sec. 3, we now suppose that 
g)L/L is small; in particular, that 

6L/L << (4/-or) ~/2 

In this case we can expand the error function in Eq. (44) by a Taylor series 
and obtain 

AC, (L, t) 2~ra~L (~-/-or) ,/2 exp [ 4/'or j 1 ( 4 ~ r )  

+ 3(4for~ t (4/-or) 1 + . . .  (45) 

This result allows computation of the normalized temporal moments of the 
distribution AC~(L, t), defined in the standard manner. In particular, after 
some laborious algebra, we find for the first moment, 

t = L (  l + u o  2s~~ 8L/2L) (46) 

and for the variance 

, ] a2 = 2/-0 + 8/-o z + /-o(~L/L) + -~ (~L/L) 2 (47) 

correct to order (~)L/L) 2. 
Comparison of these equations with those for the moments of the ideal 

case, Eqs. (35) and (36), allows us to identify a correction to be applied to 
each measured moment to recover the ideal moments. Thus 

lid = ~ -}- r (48) 

and 

a~ = 2 + 6a~ (49) 

Here 

871 = 6L/2uo (50) 

and 
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I ag 6L } 
= - [48 11:  ~ + 

(51) 

so that both corrections may be calculated from a knowledge of the mean flow 
velocity and an estimate of the diffusion coefficient. For the purpose of 
design, we may assume u0 = L/?id, and that :D12t/a 2 >i 10. With these 
approximations we find 

6L 
671 i d ~ - -  

2L 

and 

so that if 6L/L is Chosen to be no more than 0.01, the corrections to neither 
moment  amounts to more than 0.7%, and the method proposed for their 
estimation should be satisfactory. 

4.2.2. A Small Volume at the Tube Exit 

A second type of concentration monitor, and the one most commonly 
employed in the measurements reported so far, consists of a small sampling 
volume, Vo, placed at the exit of the diffusion tube. The concentration of the 
effluent "from the tube in this volume is measured, usually with the aid of a 
refractive index detector [7, 8]. The differences between the moments 
observed with this type of detector and the ideal ones are difficult to analyze 
because the flow pattern and geometry of the sample volume are not well 
known. Consequently, we examine two extreme cases to set bounds on the 
effect and to provide guidance for the design of an instrument. 

We first consider that within the sample volume the dispersion process 
proceeds unaltered and that the refractive index detector determines the 
average concentration of the dispersing material within it. In this case, the 
analysis is identical to that given above and, in terms of the detector volume, 
the corrections to the moments read 

L[vo  
672 = - -Uo ~27ra~L] (52) 

and 

(53) 
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t=O 

~-pulse 
input [ 

ao 

de tec to r  volume v D 

l Perfectly ~~  A C ~  
- -  �9 Diff usivit y, E mixed ACD region 
Ptugflow ACD t 

L z 
The concentration monitor as a perfectly mixed volume, Vo, at the 

end of the diffusion tube. 

0 
Fig. 3. 

An alternative model of the detector is that it acts as a perfectly mixed 
volume in which the composition is uniform. This model, which is probably 
slightly closer to reality, is illustrated schematically in Fig. 3. The presence of 
the perfectly mixed region implies that there now exists a boundary condition 
for the diffusion equation at the exit from the diffusion tube, and not at 
infinity, as described previously. 

In order to analyze this problem, we first make use of the result given 
earlier, that to a very good approximation, the Taylor dispersion process for 
the conditions of interest here, 2D~2t/a~ >- 10, may be described by means of 
the one-dimensional diffusion equation (29). For the model of the diffusion 
tube and detector shown in Fig. 3, the boundary conditions for the solution of 
this equation are: at z = 0, 

~C,m = ~ ( z ) ( C .  - C~ i )  

and at z = L, (54) 

where ACe is the perturbation to the concentration in the detector volume. 
The second boundary condition implies that the concentration at the exit from 
the diffusion tube is identical with that in the entire detector volume. 

The transfer function for this process has been given by Yano and 
Aratani [16] and reads 

2/3 exp {(1/2~'0)(1 -/3)} 
H ( s )  = ( S S )  

( 2 a L s / - ~ o ) ( 1  - exp (-3/~'0)) + (1 + 3) - (1 - / 3 )  exp (-3/~'0) 
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where 

/3=[1 + 4roLS],/Z_ao l 

and 

vo 
7r a2 L 

is the ratio of the detector volume to the diffusion tube volume, and ~'o is 
defined by Eq. (34). In addition, s is the Laplace transform variable 
conjugate to the time t. The transfer function H(s) can be used to derive the 
temporal moments of the concentration perturbation ACo for a delta pulse 
input by means of the standard relation [17] 

dH(s) 
#p = l im( -  1 )  p - -  (56) 

~o ds p 

For the first moment, we find 

and for the variance, 

2 = ~ 2~'o(1 + + ~'o2(-5 + 4E -~/r~ + e -2/r~ 

( L ) 2 [  VD~2[ 2e-1/~o } 
+ ~o I ~ ]  1 - + 2e-2/~~ 

vo L 

(57) 

(58) 

The choice of ~'o -< 2 • 10 -3 for diffusion coefficient measurements implies 
that the exponential terms in Eqs. (57) and (58) are entirely negligible, and 
we obtain simply 

= L/uo{1 - ~'o + 1Io/~razL} 

and 
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2 = (L/K0)2 (2~'0 - 5~'~) + ~-~02L ] + 2~'0 

The corrections to be applied to the moments observed with this detector in 
order to recover those of the ideal experiment can then be obtained by 
comparison with Eqs. (35) and (36a). That  is, 

iia = i + 6i3 

and 

2 = a2 6 ~  
O-id -[- 

where 

= L  

and 

Ao3= ~oo 13~'o2--~--~o2L ] -2~'o (60) 

In both of these corrections, the first terms arise from the modifications of the 
diffusion process caused by the perfectly mixed region, whereas the remain- 
ing terms arise from the finite volume of the detector. These latter terms are 
naturally somewhat larger than those for an unmixed detector of the same 
volume given in Eqs. (52) and (53). 

If, in a practical instrument, it is known which type of model detector 
most closely represents reality, then of course the appropriate correction 
terms given above should be employed. However, it is most likely that a 
practical detector will have a behavior intermediate between these two 
extremes. In this case, it is preferable to design the instrument so that the 
corrections evaluated for either model are negligible. For a fixed fluid 
velocity, and diffusivity, all the corrections can be made arbitrarily small by 
selection of the length of the diffusion tube, L, even if the detector volume, 
Vo, is dictated by external constraints. 

4.3. Sample Introduction 

Thus far we have been concerned with the evaluation of the temporal 
moments of the concentration distribution resulting from a &function injec- 
tion of a sample at z = 0, which is uniform across the diffusion tube 
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cross section. In this section, we recognize that  it is impossible to provide such 
a 6-function pulse in practice, but that  it is relatively s t ra ightforward to 
introduce an approximate ly  rectangular  pulse of a sample into the tube at z = 
0, which satisfies the condition that  it be uniform across the diffusion tube. 
W e  therefore now consider the temporal  moments  of the concentrat ion 
distribution detected in a cross section at  z = L as a result of an exactly 
rec tangular  input. For this input, the original boundary  condition of Eq. (3) 
a t  z = 0 is modified to read 

AC~(r, O, O, t) = ( G i  - Cl f )  0 <_ t <_ ti 

kC~(r,  0, 0, t) = 0 otherwise (61) 

He re  

v, 
t i  - 7r a~Ko 

and V~ is the volume of the sample  injected. Ra ther  than solve the complete 
Tay lo r  dispersion problem subject to this new boundary  condition, it is 
s impler  to ant icipate  that  the effect of  the rectangular  pulse is small and to 
use again the approximat ion that  the dispersion process can be described by 
the one-dimensional diffusion equation (29). In this case, the problem is a 
s tandard  one, and the results for the first moment  and the var iance observed 
a t  a fixed cross section in the tube are [16] 

L t i  
= _--- (1 + 2~'0) + - (62) 

u0 2 

=_-- 1 + 2~'0+ 
Uo 

and 

tr 2 = 2~'o + 8~ "2 + 12j (63) 

= ~ 2~'0 + 8~'o 2 + ]-~ I,~ra~L] J 

T h e  corrections required to correct  moments  observed using a square input 
pulse to the ideal ones for a b-function pulse are therefore 
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and 

~ t 4  : - -  : (64) 
U 0  

, 

6a~ = - ~ ~oo I, Tra~Ll 
(65) 

As for the finite volume of the detector, the corrections are made smaller by 
increasing the diffusion tube volume for a fixed injection volume. Provided 
that the corrections can be made sufficiently small, departures from a true 
rectangular pulse will have an insignificant effect upon the observed 
moments. Since the volume of sample injected can be simply determined, 
both corrections are readily estimated. 

5. DIFFUSION TUBE GEOMETRY 

The analysis of the ideal experiment presumes that the diffusion tube is 
straight, and of uniform, circular cross section. The preceding two sections 
have established that in order to minimize corrections arising from the sample 
introduction and concentration distribution, the tube must be as long as 
possible for a fixed mean flow velocity. Since there is a practical lower limit to 
the flow velocity that can be held constant, this requirement normally 
requires a tube about 10 m long. Such a tube cannot be conveniently 
maintained at a constant temperature if it is straight, so it is usually wound in 
the form of a helix [14]. Furthermore, in order to satisfy condition (28), it is 
usual to employ tubes with an internal radius of about 0.5 mm, so that 
uniformity of the bore in manufacture is difficult to achieve. For the same 
reasons, exact circularity of the cross section cannot be assured. Finally, in 
order to couple together various items of equipment, it is sometimes necessary 
to use a small length of tubing of a different bore. In this section, we consider 
the implications of each of these effects for the first and second spatial 
moments of the concentration distribution in the tube, and hence diffusion 
coefficient measurements. 

5.1.  Hel ical  Diffusion Tube 

When the diffusion tube of internal radius a0 is wound into a helical coil 
of radius Re, the varying path lengths traversed by the fluid at different radial 
positions in the tube and the secondary flows present in the flow contribute to 
the dispersion process. This topic has been extensively studied, in view of its 
significance in physiological problems and in many engineering applications 
[ 18--21 ]. Consequently, it is sufficient for the present purpose to make use of 
these earlier studies. 
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Among the parameters that characterize the dispersion process in helical 
tubes, we consider the radius ratio 

= Rc/ao (66) 

the Reynolds number 

Re = 2ao-ffop/~ (67) 

the Schmidt number 

Sc = r//0Y)12 (68) 

and the Dean number 

De = R e w  -l/z (69) 

The theoretical analysis of Erdogan and Chatwin [19] was based upon the 
assumption that the dispersion process could be described by a one- 
dimensional diffusion equation similar to Eq. (29), and that the velocity 
profile in the diffusion tube conformed to that given by Dean [22]. These 
conditions restricted the validity of their results to large values of w and to 
cases where ~Olzl/a2>> 1. Nunge et al. [20], using a different approach, 
employed the velocity profile of Topakoglu [23], and were thereby able to 
extend the earlier analysis to small values of w. Finally, Janssen [21] 
introduced the velocity profile of Dean and the condition ~Dl2t/a 2 >> 1, but 
solved the resulting differential equation numerically for large values of w. 
None of these analyses provides a description of the dispersion process in a 
closed form. Nevertheless, within the range of conditions of interest here, 
large ~o, small values of the group DeZSc, and 9912t/a2>> 1, the three 
treatments lead to essentially identical results. However, the approximate 
nature of the analyses implies that it is more prudent to employ the results to 
establish conditions under which the effects of tube curvature are negligible, 
rather than to attempt to use them to obtain corrections to spatial moments 
observed in a curved tube to correct them to those for a straight tube. 

For this purpose, we employ the results of Nunge et al. [20] to examine 
the fractional difference between the spatial variance of the concentration 
distribution in a curved tube and that in a straight tube for the same average 
velocity. Because of the assumptions of the theoretical analysis, the first 
moments are necessarily identical. The second spatial moment difference may 
be written as 

A g(Re, Sc, w) (70) 
u~0 
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where [#~]c is the second moment for the curved tube, and where, with 
sufficient accuracy for the present purpose [20], 

=_192 1 4 R e  4 
g(Re, Sc, w) w2 [5762 • 160 

2Re2 [3~0 Sc 
+ 576 x 144 

- 2 5 6 9  2 
15-i   sc 

_25497] 
134401 

109 ] 
+ 43--5 J 

+ 120 • 196 + 4 + (71) 

For the range of values of 0o of interest here, 100 _< w _< 500, the function 
g(Re, Sc, ~o) is essentially dependent on the single dimensionless group De2Sc 
as indicated by Janssen [21 ]. Consequently, in Fig. 4 we make use of this fact 
to provide a convenient representation of the behavior of G(Re, Sc, w). The 
plot indicates that for any value of ~o in the prescribed range, a choice of 
conditions such that 

D e 2 S c  _< 2 0  

will ensure that coiling of the diffusion tube has an effect on the second 
central moment of the distribution no greater than _+0.05%. 

The above discussion provides a useful guide for the design of an 
instrument. Nevertheless, it should be emphasized that it will still be essential 
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to examine the effect of the diffusion tube curvature on the second moment 
experimentally for a particular instrument. This is easily accomplished, 
because the Dean number for the flow can be altered by using different flow 
velocities. Provided that the tube coiling effect is insignificant, it follows that 
the observed diffusion coefficients should be independent of the flow velocity 
within the precision of their measurement. 

5.2.  Nonuniform Diffusion Tube 

A solution of the diffusion equation for steady flow in a straight tube of 
circular cross section, whose area varies in an arbitrary fashion along the axis 
of the tube, is not practical. Consequently, we consider a simple model of the 
possible nonuniformities in the cross-sectional area of the tube that has the 
benefit of relative simplicity and incorporates some of the features of the 
nonuniformities likely to be present in real tubes. Figure 5 contains a sketch 
of this model. The radius of the cross section of the tube is assumed to vary 
sinusoidally according to the equation 

a ( z ) =  a o ( l +  esin ~ )  (72) 

We presume that the amplitude of the oscillations is small, e << 1, that the 
wavelength is large compared to the radius, X >> a0, and that X << L, the length 
of the tube. 

I n  line with our earlier arguments, we seek to analyze the diffusion 
process in this nonuniform tube in an approximate manner so as to obtain the 
moments of the concentration distribution in the tube as a perturbation to 
those in a uniform tube with a constant radius a0 for the same volumetric flow 
rate. Accordingly, we restrict the discussion to flows for which Re[da /  
dzl  << 1, i.e., for which the lubrication approximation is valid. These flows are 
usually employed for the measurements in order to ensure laminar flow and 
satisfaction of condition (28). In this case, the Navier-Stokes equations 
reduce to the form [24] 

Op I1 0 (rOUzl 02u~ I 
Oz = n [r or k Or l + --&Cz2 J 

and 

Ou~ 1 0 
0-~ + -r Or (ru,) = 0 
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Z 

Fig. 5. The model of the nonuniform diffusion tube. 

where use has been made of the cylindrical symmetry, and where Uz and Ur 
represent the axial and radial components of the fluid velocity, respectively. 
Furthermore, because OZuz/OZ 2 will be smaller than 02Uz/Or z by a factor of 
order (ao/~) 2, we may neglect the former term completely for the conditions 
specified above. In this case, we easily obtain the solutions for the two velocity 
components, correct to order eao/h, as 

.,rz,= -(7] 

and 

Ur(r ,  Z)  -- 

(73) 

where Q is the constant volumetric flow rate through the tube. 
Anticipating, for simplicity, that the concentration distribution in the 

tube is cylindrically symmetric, as it was for the uniform tube, the diffusion 
equation may now be written as 

1 0 ( A C , ) 1 0 { r O A C I  ] 02(AC,) OAC~ OAC~ (75) 

~o,2 ot r Or ~ --gU~ ! + & ~  u~ 0--7 - u~ O-7- 

The boundary conditions are, at t = 0, 

AC,(r, O, O) = 6(z)(G, - C~f) 

and 

a(,~C,) 
Ov 

0 at r = a(z) for all t (76) 

where O/Ov indicates differentiation along the normal with respect to the tube 
wall. 

We now write the velocity components and the concentration distribu- 

4 o0  a2 cos (7]   74, 
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tion for the nonuniform tube as perturbations to those for the uniform tube, so 
that 

Uz(r, z) = Uo(r) + ~ u; (77) 

ur(r, z) = ~ u; (78) 

and 

ACI = AC1 ~ + r c' (79) 

where the superscript or subscript (0) denotes the concentration distribution 
in the uniform tube. Expansion of Eqs. (73) and (74) then shows that 

u,z= _4,o sin (80) 

and 

u" 4u0a0 (~-~) [~00 (~)3] - -  cos - (81) 
X 

As we have noted earlier, for the conditions of interest, the contribution 
of axial molecular diffusion to the dispersion process is negligible. Conse- 
quently, following Taylor [6], we neglect the term 02(AC1)/Oz 2 in Eq. (74). 
Furthermore, making use of the fact that O(ACI)/Oz, is, to a very good 
approximation [6, 14], independent of r, we see that the diffusion equation 
(74), to zeroth order in e (i.e., for a uniform tube), is just that given by Taylor 
[6]. The temporal moments of the solution of this equation, averaged over a 
cross section, are therefore just the ideal moments given by Eqs. (35) and 
(36a). 

To obtain the moments of the solution to first order in E, we employ Eqs. 
(77)-(79) in the diffusion equation (75) and again neglect the longitudinal 
molecular diffusion term. Collecting terms of e, we find the following 
equation for the concentration distribution perturbation c' in the nonuniform 
tube: 

Oc' 0r 
a t  + U ~  + u ' ( r ) -  [10(  OC)l O(AC~ + u'~ O(AC~ Y),2 r Or r ~r (82) 

To the same order in E, the boundary condition of no molecular flux through 
the tube wall can be shown to be equivalent to 
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O(ACI) 
Or 

0 (83) 

This is because the curvature of the wall, to first order, depends linearly on 
the product of E with ao/X , and ao/X itself is presumed small, so that the 
curvature is essentially only a second-order effect. 

We now use the fact that the term u'~O(dxC~ is very much smaller 
than U'zO(AC~ because O(AC~ is small and because u',/u'~ ~ 0 (a0/X). 
This justifies the neglect of the first of these terms in the diffusion equation 
(82) for the concentration distribution perturbation c'. Averaging Eq. (82) 
over a cross section of the tube, and making use of the boundary condition 
(83), we obtain 

o-T + + 7 z  = o 
(84) 

Here  the subscript m denotes a concentration averaged over a cross section. In 
order to evaluate the remaining cross section averages, we again make use of 
the Taylor approximation [6] that O(AC~ is indistinguishable from 
(02~C~ where AC~ is the cross-section averaged concentration in the 
uniform tube, and we ~tlso apply a similar approximation to Oc'/Oz. Thus we 
obtain the final differential equation as 

0c- ? C~ / (0c" 1 
0---[+~\ Oz l + ~ ~  =0 (85) 

Here, ~ is the mean velocity in the uniform tube, and u'(z) is the first-order 
perturbation to it in the nonuniform tube, given as 

271-z 
u' = - 2 ~  sin - -  (86) 

X 

by averaging Eq. (73) over a cross section. 
Now taking the Laplace transform of Eq. (85), we obtain 

~-z  + ~ + 2" = 0 (87) 

Now it follows from Eq. (79) and the definition of the temporal moments of a 
distribution that to first order in ~, the raw moments in the nonuniform tube 
are related to those in the uniform tube by the expression 

[#p]nu = [#p]id -[- ~#p5 (88) 
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where 6#p5 is proportional to 6 and represents the perturbation to the ideal 
moments of the uniform tube. Using the results [ 17] that 

dP c'm 
6~p5 = lim ( - 1 ) P - -  

s~o ds p 

and 

a (ac%) 
[~p]ia = lim ( -  1) p 

s~o ds p 

we can employ Eq. (87) to construct differential equations for the perturba- 
tion to each moment. Differentiating Eq. (87) once with respect to s, 
reversing the order of differentiation, and taking the limit as s --~ 0, we obtain 
for the first moment 

1 d(6~ls)  u' d 
6 d ~  -]- =u 0 d z  (lid) = 0 (89) 

and after two differentiations of Eq. (87), we obtain in the limit s ~ 0, 

l d  u ' d  2 
d~ ((~s Jr- --u 0 dz  [J~2]id -- ~-Uo~ ~]-ti5 = 0 (90) 

m 

Equation (89) is readily integrated using Eq. (86) for u' and Eq. (35) for lid to 
yield the perturbation to the first moment observed at z = L as 

i1  91, 6u15 = 7rU-o 

where we have made use of the fact that 6/z~5 = 0 at z = 0, by virtue of the 
boundary conditions. Subsequently, Eq. (90) may be integrated using Eq. 
(35) for [#2]id to yield at z = L 

6#25 : E  ~ U O  2 -]- 87r~12~o ] I -- COS (92) 

The first moment observed in the nonuniform tube is therefore 

{ ~X(1 - cos (2~L/X)) / 
(93) 
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and this result, together with (88), (92), and the definition of the variance 
[cr2],u = [t~2]~ - [#1 ].u 2, can be used to determine this central moment to first 
order in e as 

so that 

L 2 2 ~*(1 - cos (2~-L/X))] 

j (94) 

6 ~ -  7rK02 1 - cos (95) 

From Eqs. (93) and (94), we first note that because, under practical 
conditions, ~'0 << 1, the correction to both moments is of order ~X/L. Because 

<< 1 and X/L << 1 for the most likely practical situation, the corrections to 
both moments are small. For example, if the nonuniformity of the tube bore is 
of the order of 1% and X/L ~ 0.1, then the correction to neither moment 
exceeds 0.06%. Moreover, as was shown earlier, to a very good approxima- 
tion, the value of 3912 can be determined from Eq. (41), which for the 
nonuniform tube takes the form 

Y),2 - 24 [a2].. 24 ~ri2~ (96) 

by virtue of the smallness of ~'0. That  is, to first order in e, the effect of the 
nonuniformity of the diffusion tube bore upon the moments of the concentra- 
tion distribution upon the evaluation of the diffusion coefficients only occurs 
in small terms ( -1%) in the complete working equation of Eq. (40). 
Furthermore, these effects are themselves small, so that the overall contribu- 
tion of nonuniformity to the evaluation of the diffusion coefficient from the 
observed moments is negligible, provided that the conditions of our analysis 
are met. 

A final point of significance arising from the nonuniformity of the 
diffusion tube concerns the determination of the appropriate value of a0. It is 
easily shown that for the present model of the nonuniform tube, the volume of 
the tube to first order in ~ is just 

Vt=rca2L 1 + ~  1 - c o s  

Thus if ~2 is determined from a measurement of the volume of the tube and 
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its length, the maximum error is of order (~X/L), which in practice can be 
made negligible by selection of tubing of a suitable quality. 

5.3.  Noncircular Cross Section 

As in the case of the preceding section, we consider the effects of the 
noncircular cross section of the tube by means of a particular model. We 
suppose that the tube possesses an elliptical cross section with major and 
minor semiaxes a~ and a2, respectively, so that the eccentricity e is given by 

e = (1 - a~/a~) 1/2 

Aris [13] has examined the problem of Taylor dispersion in such a tube, and 
from his work it may be shown that in such a situation the simplified working 
equation (41) for circular tubes must be replaced by the equation 

f (e)a~ 
1 ) 1 2  - -  24 0. -2 (97) 

where # and 0 .2 a r e  the first raw temporal moment and variance observed in 
the elliptical tube, and 

24 - 24e 2 + 5e 4 
f ( e )  = 2 4 -  12e 2 (98) 

In practice, it is not convenient to determine the ellipticity of a tube, or either 
semiaxis directly. However, by means of the measurement of the volume of 
the tube and its length, it is possible to determine the cross-sectional area of 
the tube, A, where 

A = 7rala2 = 7r a~(1 - E2) 1/z 

Therefore, consider the result of evaluating the diffusion coefficient from 
experimentally determined moments 7 and and 0.2 in an elliptical tube by 
means of the equation 

_,4 #l 
Y)'lZ - 24~ o -2 (99) 

Here the prime indicates that the diffusion coefficient calculated in this way 
differs from that evaluated according to Eq. (97). The ratio of the diffusion 
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coefficient calculated in this way to true value, 5912, is 

59',2 A (1 --  e2) 1/2 

59,2 7ra~f(e) f(e) 
(loo) 

Expanding the ratio in powers of the eccentricity, e, we find that 

~tt2 1 14 e4 

5912= - ~  + ' ' "  

which indicates that for small eccentricities, to equate 2912 to ~'12 would be a 
very good approximation. Indeed, direct numerical evaluation of the ratio 
Y)12/~'12 through Eq. (100) shows that even when e = 0.5 (az/al = 0.866), 
the ratio amounts to 1.007, whereas when e = 0.2 (a2/a~ = 0.98), it departs 
by only 0.01% from unity. We see therefore that Eq. (99) may be used for the 
interpretation of experimental data even if the diffusion tube has an elliptical 
cross section, provided that the cross-sectional area of the tube is determined 
experimentally. As long as the eccentricity of the tube is not greater than 0.2, 
the experimental data may be evaluated using Eq. (40), with negligible error, 
inserting A/Tc in place of ao 2. 

5.4. Connecting Tube 

In order to consider the effect of adding to the exit of the diffusion tube a 
short length of connecting tubing of a different diameter, we again employ an 
approximate treatment. As before, this is justified by the small magnitude of 
the effect to be considered. We suppose the connecting tube, radius ac, to be 
joined to the diffusion tube as shown in Fig. 6 so that the junction occurs at 
z' = 0. We assume that there is a sharp transition in the flow pattern in the 
tube from the fully developed profile of laminar flow in the diffusion tube to 
that fully developed profile characteristic of the connecting tube. I f ~  denotes 

I hi 
0 z 

The connecting tube between the diffusion tube and the 
detector. 

-t_ 
Fig. 6. 
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the mean flow velocity in the connecting tube, then clearly, by virtue of 
continuity, 

ag~0 = a2Kc 

We further suppose that the diffusion tube and the connecting tube extend to 
infinity in either direction about z' = 0, and that the concentration distribu- 
tion resulting mainly from dispersion in the diffusion tube is observed as a 
cross-section average at z' = l. It may be remarked that although detection 
would not actually be carried out in this way, the corrections to account for 
the use of other types of detector and the finite length of the tube have been 
given in Section 4.2. 

In order to obtain the moments of the concentration distribution 
observed at z' = l, as a result of a sample injection into the diffusion tube, we 
use again the Taylor approximation that the diffusion process in each tube 
may be represented by a one-dimensional equation of the form of Eq. (29). 
This means that we ignore any transient effects in the entrance region to the 
connection tube. In particular, we employ the effective diffusion coefficient 
defined by the equation 

E~ 
48 9 1 2  

which is analogous to that defined for the diffusion tube' in Eq. (30). With 
these approximations, we first obtain the moments observed at z' = l in 
response to a ~3-pulse injected at z' = 0, and in this calculation we allow 
dispersion both upstream and downstream of z' = 0. Fortunately, we do not 
need to carry out a detailed analysis here, since a very similar problem has 
already been solved by van der Laan [25]. His treatment is easily adapted to 

2 the present case, and yields, for the first raw moment T~ and the variance %, 

( ( l 1 + ~c 1 + ~ol! ( m l )  

and 

2 ae 13a~ 2 2~'c + ~'c + 2  O" c (102) 

where 
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2 -  
ac Uc r 

48 ~912l 

We now use the result that the first raw moment and second central moment 
of  the response to any input function are just the moments of the response to a 
delta-pulse added to the appropriate moment of the input function. That  is, 
we suppose that the input to the connecting tube is now provided by the 
concentration distribution resulting from Taylor dispersion in the diffusion 
tube, in the moments ~ and azd given by Eqs. (35) and (36a). In this case, the 
moments observed at z' = l as a result of a delta-pulse injection at z' = - L  
a r e  

/zl  = l id + tc = tid + 616 (103) 

and 

~2 2 2 2 6o~ 
= O'id q -  O" c = O-id .q-- (104) 

These equations enable us to identify corrections 6T6 and &r 2 to be added to the 
moments measured at z' = l to recover the ideal moments. These corrections 
are given by the negative of the right-hand side of Eqs. (101) and (102), 
respectively, and may be easily estimated from a knowledge of the connecting 
tube geometry. 

Using the results for the ideal moments, it may be shown that the 
fractional corrections to the observed moments are given approximately by 
the results 

and 

+ 

o's, 'a: l} 6az/~ri 2 = - a4 [L + ~ ~.(o 3 ~,aol + 2 

Because ~'0 itself is inversely proportional to L, the length of the diffusion tube, 
it may be seen that, as expected intuitively, reducing both the length and the 
radius of the connecting tube decreases the magnitude of the correction. For 
example, even if 1/L = 0.01, the use of a connecting tube with a radius 
ac = ao/4 renders the correction to the first moment less than 0.1% and that 
to the variance less than 4 x 10-3%. 
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6. CONCENTRATION DEPENDENT FLUID PROPERTIES 

In all of our analyses so far, it has been presumed that the properties of 
the fluid mixtures involved are independent of composition. In this section, we 
examine the consequences of the fact that both the diffusion coefficient to be 
measured and the density of the mixture depend on composition. Since the 
sample of the mixture injected is necessarily of a different composition from 
that of the flowing stream, the density of the mixture will vary from point to 
point in the diffusion tube, giving rise to the possibility of natural convective 
flows. Furthermore, the composition dependence of Y)12 implies that we 
should examine again our solution of the diffusion equation for this case. 

6.1. Concentration Dependent Diffusion Coefficient 

Because it is not possible to solve the diffusion equation (2) for the case 
when ~ 2  is a function of C~, we consider instead an approximate treatment 
based upon that originally given by Taylor [6]. That is, we again recognize 
that to a very good approximation, under the conditions of interest, the 
dispersion process may be described by a one-dimensional diffusion equation 
describing the evolution of the cross-section averaged composition, which is 
characterized by the effective diffusion coefficient 

2--2 
a0 u0 

E 
48 ~912(G ) 

which is now supposed a function of G- Following Taylor [6], we may then 
write the diffusion equation in the form 

O(AC',m) 0 (~ O(,~C'~m~ 
ot of ~ of ] (lo'3) 

where ~ is the axial distance with respect to the moving origin defined by Eq. 
(6). The initial condition for the solution is the injection of a 5-function pulse 
at z = 0 at time t = 0. 

We now suppose that the composition variation of the molecular diffu- 
sion coefficient can, over a suitably small composition range, be represented 
by the equation 

~)12(AClm) = 91~ - XAClrn) 

where Y)~ is the diffusion coefficient at the composition of the flowing 
stream. Thus we have 

E(AClm ) = E~ + xAClm) (106) 

where E ~ is the effective diffusivity at the composition of the flowing stream. 
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A perturbation solution of Eq. (105) with E given by Eq. (106) has been 
given by Hopkins [26]. The first-order perturbation solution may be written 

AC;m(x,t)  = A ~  1 +  4~r3/2a~(EOt),/2[2(-EOt-~er ~2(E~t)~/2 ] 

Here, AC~~ is the solution when E = E ~ is a constant, which is, in the present 
notation, 

ACOrn = N1 27r3/2(EOt)l/2a2 exp ( -  ~2/4E~ 

Here, N~, defined by Eq. (1), again represents the number of moles of species 
1 injected in the sample in excess of those present in the same volume of the 
flowing stream. The first and second spatial moments of this perturbed 
distribution can readily be evaluated with respect to the moving origin to lead 
to the result that 

and 

~ '  = 2E~ ~1 

which we may write as 

where 

u7 = o 

15 11l 1 + N,x ~6 s ~  

#'2' = 2E(Clr)t  

N[ 5 1~/ 

E(C,~) = E ~ I + X 7ra2(2EOt),/z j 

so that E(C~r) is the value of E at a composition 

Clr = Clf + 7r a2 ( 2E~ U2 
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Recalling the definition of E, we may then write 

-~gagt 
t t  

#2 24 Y)lz(Clr) 

which has exactly the same form as that of the working equation derived for 
the case of constant diffusivity. Hence we may conclude that if we employ Eq. 
(23) or its equivalent in terms of temporal moments [Eq. (40)], the diffusion 
coefficient obtained should be referred to the composition Clr given by Eq. 
(109) and not to the composition of the flowing stream Cty. 

Because modern composition monitors, such as the refractive index 
detector, are very sensitive, the value of N~ can usually be very small, and the 
reference concentration then departs insignificantly from that of the flowing 
stream. 

6.2. Concentration Dependent Density 

We must now consider the consequences of the fact that the liquid 
mixture sample injected into the flowing stream is necessarily of different 
density from that of the flowing stream. Because the concentration differ- 
ences involved are small, we may write the density p at any point as a linear 
function of the concentration, so that 

p =&(1 + "/~C,) (110) 

where of is the density of the flowing stream. The occurrence of density 
differences in the diffusion tube introduces two new effects into the dispersion 
process. First, the longitudinal density gradient leads to longitudinal pressure 
gradients that modify the velocity distribution in the flow. Second, the 
cross-sectional density gradients lead to a secondary flow driven by buoyancy 
forces. The equations of fluid mechanics governing this situation have not 
been analyzed exactly. However, Erdogan and Chatwin [19] have given an 
approximate treatment based upon the assumption that the density differ- 
ences involved are small, and which is restricted to the region where the 
Taylor dispersiort process has become one-dimensional. Under these condi- 
tions, they found that the evolution of the cross-section averaged concentra- 
tion in the tube was controlled by the equation 

OAC, m a~-~ O IOAC,,~ /OACu,\ 3] 

Here Q2 depends on the ratio R = a0Uo/~012 and the Schmidt number defined 
by Eq. (68): 
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1 2 

8 - ~ R  Sc + - -  19,797 RZ + _ _  Sc + 60480 
197,120 56 R 

The parameter 4~ is defined in terms of the coefficient 3, by the equation 

[~ g a~02] 2 

where g is the acceleration due to gravity. 
Further attention was also given to the problem by Barton [27, 28] and 

Smith [29]. They obtained approximate solutions of Eq. (111) and derived 
expressions for the spatial variance of the concentration distribution valid for 
the region in which the diffusion process is one-dimensional. For the case 
when Nl extra moles of species 1 are introduced in the injection, Smith's 
result reads 

2--2 aoUo 12 ~b Q22D12N 2 
, _ _  2 (112) 

#2 24 ~012 t -}- f l iT -}- ~3"~6~-~2"13/2~,1 "0 •0 J 

In this equation cr]r represents the variance at the end of a transient period 
when the asymptotic solution becomes valid. Because this transient region has 
never been analyzed, Eq. (112), which is itself approximate, cannot form the 
basis of deriving a correction to the observed variance, which reduces it to the 
ideal moment in the absence of buoyancy. Neither can the equation provide a 
guidance as to the conditions under which buoyancy corrections are negligi- 
ble. However, pending a more complete analysis of the problem, Eq. (112) 
does provide a means of deciding whether or not buoyancy effects are 
significant in particular measurements. 

If Eq. (25), the working equation for the ideal experiment, is employed 
to determine the molecular diffusion coefficient from experimental measure- 
ments of the first and second spatial moments under conditions when 
buoyancy effects are significant, then Eq. (112) shows that the resulting 
apparent diffusion coefficients, Z)72, will differ from the true diffusion 
coefficient, ~12" In fact, 

[ 240"2T~12 288 cQ2Z)~2N~] 
~ ' 2 = ~ 1 2  1 + a ~ t  + - T ~  aoUoJ t j (113) 

Thus the apparent diffusion coefficient would depend upon the time of the 
measurement, t, the velocity of the flow T0, as well as the magnitude of the 
initial concentration perturbation. Conversely, the absence of such dependen- 
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cies in experimental data implies that the results are not contaminated by 
buoyancy effects. It follows that at present, the only means to ensure that 
experimental measurements are free of the debilitating effects of buoyancy is 
to carry out measurements over a range of flow velocities and injection 
concentrations. Because buoyancy effects are minimized when the injection 
concentration is as near as possible to that of the flowing stream, measure- 
ments should be carried out with the smallest possible disturbance to this 
concentration. 

7. SUMMARY 

The foregoing analysis has shown that under the appropriate conditions, 
it is possible to design an instrument to measure liquid phase diffusion 
coefficients that departs in only small respects from the ideal description of it. 
Indeed, some of the departures from the ideal can be rendered so small as to 
be negligible. Other effects, although not negligible, may be made suitably 
small by the design so that corrections may be applied to account for them 
with some confidence. Here we summarize the results for the convenience of a 
designer and user of such an instrument. 

Among the effects that can be rendered negligible are those which arise 
from the coiling of the diffusion tube and its nonuniformity. In order to 
eliminate coiling effects, conditions must be chosen so that 

De 2 Sc _< 20 

and that w >_ 100. 
The nonuniformities of the diffusion tube bore are insignificant provided 

that the amplitude of the radius fluctuations, a0e, and the length scale of their 
fluctuations are such that 

eX/L < 1 • 1 0  - 3  

In view of both nonuniformities of the cross section and its possible noncircu- 
larity, the effective cross section tube should be determined from its volume 
and length. This measurement then renders effects due to any ellipticity in 
the cross section negligible provided that the ellipticity does not exceed e = 
0.2. Buoyancy effects have not been accounted for exactly in the discussion, 
although a means for checking for their contribution to the dispersion 
experimentally has been proposed. 

In addition, provided that conditions are chosen to satisfy the require- 
ments of laminar flow, 
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Re = 2~ 0 ao p/~ < 2000 

and the additional constraints 

and 

' :~12  t/a2 >-- 10 

ao~o/59 > 700 

the working equation for the analysis of  the diffusion coefficient is 

J~12  = - -  

A { [l+4~2~/t~d]'/2+3 .} 
24~rT~d -([1 + 4a~,/t~,] ~/2 + 2(cr~zd/7]a) -- 1) 

} x + ~ (1 - 6,,) 1/2 

where 

6a = (768)2K~ 

and K = 2.1701 . . .  x 10 5 while 

281 

_ Au 2 1,1/2 

r = {8i~d - 4a2.} 

In these expressions, A is the cross-sectional area of  the diffusion tube 
determined from its volume and length, and tid and ~2 d are the temporal  first 
moment  and variance in an ideal experiment. The latter quantities may be 
obtained from measurements  of  the same moments in a real experiment, iexpt 
and ~e2xpt, by application of  the equations 

and 

~i~ = ~xpt + ~ ~ i  
i 

~ox~t + ~ ~ 
i 
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where ~ti and 6a~ are small corrections summarized below. In addition, the 
molar concentration of species 1 in the mixture to which the measured 
diffusion coefficient refers is Clr, given by 

Clr = Clf-~- ~C 1 

where ~CI is a further small correction. 

7.1.  The Corrections 

1. When the concentration monitor is part of the diffusion tube of length 
6L, the corrections are given by 

2. When the concentration monitor is a finite volume Vo at the end of the 
diffusion tube in which diffusion occurs unaltered, the corrections are given 
by 

~ (~o) 2 {~o ( ~ )  + ~12 ,~o0~L,C ~~ ~2/j 
3. When the concentration monitor is a perfectly mixed volume, Vo, at 

the end of the diffusion tube, the corrections are given by 

4. For the finite injection volume V,., the corrections are given by 
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1 
6el : - -~  k~oo] t~raoL] 

5. For a length of connecting tube between the diffusion tube and the 
detector volume, the corrections are given by 

, (a t' { ( a: l (3t6 = ----- ] +  fo l +  
uo \ao! a~ t I ] a~]J 

( l ) 2 ( a ~ 1 4 1 2 a 9 2 ( L l ~ o + a 2 ( L ) 2  [3a~ )} 
6a2= ~oo tao! [ a t o l l  ~_2ac r~ t a~ + 2 

6. The correction to the reference composition is 

6Cl = 

5 
NI (16 

7r a~( 2~o-~oL t ) u2 

for an extra N1 moles of species 1 injected. 
It has been found that the sometimes conflicting conditions for a suitable 

design can all be satisfied in a practical instrument which will be described in 
a subsequent publication [30]. Furthermore, the residual corrections that 
need to be applied amount to no more than 0.5% in any case and are readily 
estimated. It is thus contended that the residual systematic errors in the 
application of the method of Taylor dispersion have been reduced to a level 
below that of the random errors of measurement. 
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